Tokyo University of Science

MEDIA RELATIONS

2023.07.18 Tuesday

Innovative Wearable Sensor for Measuring Sweat Lactate Levels During Exercise

Scientists solve the long-standing problem of air bubbles in sweat affecting the performance of microfluidic wearable sensors

Wearable microfluidic sensors can be used to monitor lactate concentration in sweat, a good indicator of exercise intensity. However, air bubbles present in the sweat can get into the microfluidic channels, hindering the measurement. In a recent study, researchers from Japan have developed a wearable sensor for continuously monitoring sweat lactate during exercise, which incorporates a bubble-trapping region in its microfluidic system. The proposed technology can facilitate athlete training management and health monitoring.

Innovative Wearable Sensor for Measuring Sweat Lactate Levels During Exercise

Human sweat is a rich source of health information, offering insights into a person's hydration level, electrolyte balance, and overall physiological state. For instance, lactate level in sweat is a useful biomarker of exercise intensity. Its measurement can help estimate the amount of lactic acid in the blood and, in turn, predict muscle fatigue.

Today, wearable sensors make it possible to continuously monitor biomarkers such as sweat lactate. Using the latest microfluidics technology, scientists have developed devices that convey minuscule amounts of sweat to tiny chemical sensors, which can transmit their measurements in real time wirelessly. However, one common problem in such devices is that their microfluidic channels tend to trap air bubbles present in the sweat. If these bubbles cover the sensor's electrodes, the measurements get interrupted, interfering with the continuous monitoring of the target biomarker.

To address this issue, a research team, led by Associate Professor Isao Shitanda from Tokyo University of Science (TUS) in Japan, has come up with a novel microfluidic sweat lactate sensor whose measurements remain unaffected by the air bubbles. Their study, made available online on 22 May 2023 and published in ACS Sensors on 23 June 2023, was co-authored by Dr. Masahiro Motosuke, Dr. Tatsunori Suzuki, Dr. Shinya Yanagita, and Dr. Takahiro Mukaimoto from TUS.

The proposed wearable device consists of a relatively simple layered structure―a conventional lactate oxidase sensor attached via double-sided tape to a microfluidic system made of a silicone polymer. When the person wearing the device begins to perspire, the sweat enters the microfluidic channels via four inlets and flows toward a reservoir near which the electrodes are located. Old sweat exits the system through an outlet as new sweat enters, and a small wireless transmitter reports the measured lactate levels.

The key innovation in the proposed design was the use of a larger-than-usual sweat reservoir. "By increasing the length of the reservoir in the microfluidic channel, a space of approximately four microliters was created for trapping any air bubbles that infiltrate the device, thereby preventing them from contacting the electrodes of the sensor," explains Dr. Shitanda.

The researchers tested their sensor in a series of laboratory experiments. They verified that the bubble-trapping region worked as intended by injecting bubbles into the device while measuring lactate levels in artificial sweat. In addition, the measurements were not affected by the sweat flow rate, and the response of the sensor remained stable for approximately two hours. Lastly, the researchers tested the device on a male volunteer who exercised on a stationary bike for almost an hour. The sensor showed a lactate concentration correlation ranging from 1 to 50 mM as well as a correlation between sweat and blood lactate levels.

Overall, the results of this study hint at the potential of wearable microfluidic sensors for monitoring sweat biomarkers during exercise. "Since the microfluidic system of the proposed lactate sensor is fabricated from a soft, flexible, and non-irritating material, it could be used to continuously monitor lactate levels in sweat, especially in sports and medicine," remarks Dr. Shitanda. "Wearable lactate sensors may become useful condition management tools in sports such as soccer and basketball, allowing team managers to know when it's best to replace a player."

Only time will tell what training management and healthcare monitoring will look like in the future as wearable sensors become more capable and reliable.

Reference
Title of original paper  : Air-Bubble-Insensitive Microfluidic Lactate Biosensor for Continuous Monitoring of Lactate in Sweat
Journal  : ACS Sensors
DOI  : 10.1021/acssensors.3c00490
About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Tokyo University of Science(About TUS)

Research List

Press Releases List

About Associate Professor Isao Shitanda
from Tokyo University of Science

Isao Shitanda graduated from Tokyo University of Science in 2001 and received a Ph.D. from The University of Tokyo in Japan in 2006. Since 2012, he has been an Associate Professor at the Department of Pure and Applied Chemistry at the Tokyo University of Science, where he leads the Itagaki/Shitanda lab. He specializes in electrochemical micro/nanosystems, physical and analytical chemistry, bio-related chemistry, and environmental chemistry, among other fields. He has published over 180 papers and holds six patents.
Laboratory website
Official TUS website

About Professor Masahiro Motosuke
from Tokyo University of Science

Laboratory website
Official TUS website

About Associate Professor Tatsunori Suzuki
from Tokyo University of Science

Official TUS website

About Professor Shinya Yanagita
from Tokyo University of Science

Official TUS website

About Associate Professor Takahiro Mukaimoto
from Tokyo University of Science

Official TUS website

Funding information

This study was partially supported by JST-ASTEP grant number JPMJTR21UF and JSPS KAKENHI grant number 21H03344.

Back

Contact Us

Public Relations Division, Tokyo University of Science

e-mail: mediaoffice(at sign)admin.tus.ac.jp

1-3, KAGURAZAKA SHINJUKU-KU TOKYO 162-8601 JAPAN

Our site uses cookies to assist us in studying user behavior on the site and in improving the operation of the site. By using this website, you consent to our use of cookies. See our Privacy Policy for details.
OK