Tokyo University of Science


2022.11.14 Monday

The Nose-Brain Pathway: Exploring the Role of Trigeminal Nerves in Delivering Intranasally Administered Antidepressant

A study of trigeminal nerves reveals how the intranasal administration of the novel glucagon-like peptide-2 can produce anti-depressant effects

In a recent study, Japanese scientists have developed a novel concept of a nose-to-brain system for the clinical application of neuropeptides. They developed a derivative of glucagon-like peptide-2 and found that when administered intranasally, it is efficiently delivered through the trigeminal nerve to the site of action and exhibits antidepressant-like effects. This is the first demonstration in the world that intranasally administered neuropeptides reach the brain (hippocampus and hypothalamus) via neurons.

Intranasal (in.) administration has been garnering increasing popularity as a non-invasive approach to deliver drugs directly to the brain. This approach involves the respiratory or olfactory epithelia of the nasal mucosa through which the drugs reach the central nervous system (CNS). Transport from the respiratory epithelium via the trigeminal nerve is considerably slower than transport from the olfactory epithelium route via the olfactory bulb (OB) or cerebrospinal fluid (CSF). However, only a small portion of the nasal mucosa in humans is made up of olfactory epithelium, propelling researchers to focus on improving in. drug delivery time through the predominant respiratory epithelium.

To facilitate this, a team of researchers including Professor Chikamasa Yamashita from Tokyo University of Science, Japan, developed a novel drug to test its uptake efficacy by the CNS.

To offer more insight, Prof. Yamashita states: "In a previous study, we combined functional sequences (namely, a membrane permeability-promoting sequence [CPP] and an endosomal escape-promoting sequence [PAS]) to glucagon-like peptide-2 (GLP-2), which is effective against treatment-resistant depression, so that it can be efficiently taken up by neurons. Using this, we aimed to construct a nose-to-brain system mediated by the trigeminal nerve in the respiratory epithelium".

While studying the uptake of this novel PAS-CPP-GLP-2 by the CNS, the team noted that its anti-depressant effects via in. administration remained on par with intracerebroventricular (icv.) administration at identical doses. Therefore, Prof. Yamashita and his colleagues elucidated a nose-to-brain transfer mechanism to explain why intranasally administered GLP-2 derivatives show drug effects at the same dose as intracerebroventricularly administered GLP-2 derivatives. The team's findings have been documented in a study made available online on 30 September 2022 in Volume 351 of the Journal of Controlled Release.

The team performed icv. and in. administration of PAS-CPP-GLP-2 into mice. The amount of drug transferred to the whole brain was quantified by enzyme-linked immunosorbent assay (ELISA).

Surprisingly, the ELISA revealed that a much smaller amount of intranasally administered PAS-CPP-GLP-2 reached the brain than intracerebroventricularly administered PAS-CPP-GLP-2. However, both icv. and in. administration showed efficacy at the same dose. This is attributed to the fact that icv. administration introduces drugs to the place of origin of CSF (ventricle), causing them to diffuse into the CSF and spread through the brain. Since the CSF is present in the spaces outside the capillaries of the brain, the team saw that a large portion of PAS-CPP-GLP-2 was likely to stay here without being transported to its working sites of action. On the other hand, nasally administered GLP-2 derivatives were rapidly taken up by the trigeminal nerve of the respiratory epithelium, and efficiently reached the site of action while transiting neurons.

Prof. Yamashita explains: "This suggests that the peptide delivered to the site of action by icv. administration is present in large amounts in the brain but only in very small amounts, as it remains in the perivascular space. On the other hand, intranasally administered PAS-CPP-GLP-2, unlike icv. administration, may be transferred to the site of action without passing through the CSF or perivascular space".

These results prompted the team to identify the central transfer drug delivery route following in. administration. This route involved the principal sensory trigeminal nucleus, followed by the trigeminal lemniscus of the trigeminal nerve, and led to the drug's working sites. Finally, it was discovered that the migration of PAS-CPP-GLP-2 via nerve transit was the reason behind its pharmacological activity despite its low levels in the brain upon in. administration.

Prof. Yamashita explains, "This is the world's first drug delivery system that allows intranasally administered peptides to be delivered to the central nervous system via nerve cells, delivering peptides to the site of action with the same efficiency as icv. administration."

Speaking about the future applications of the team's findings, Prof. Yamashita concludes: "Current data suggests the possibility of extending the use of this system from treating depression to delivering drugs in patients with Alzheimer's disease. It is therefore expected to be applied to neurodegenerative diseases with high, unmet medical demand."

The Nose-Brain Pathway: Exploring the Role of Trigeminal Nerves in Delivering Intranasally Administered Antidepressant

Image title: Nose-to-brain drug delivery via the trigeminal nerve innervating the respiratory epithelium

Image caption: Intranasal administration of PAS-CPP-GLP-2 results in its delivery to the brain via trigeminal axons of the trigeminal nerves. Therefore, it is thought to constitute a nerve-associated transcellular pathway for drug delivery.

Image credit: Prof. Chikamasa Yamashita from Tokyo University of Science

License type: Original content

Title of original paper  : Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative
Journal  : Journal of Controlled Release
DOI  : 10.1016/j.jconrel.2022.09.047
About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Tokyo University of Science(About TUS)
Research List
About Professor Chikamasa Yamashita
from Tokyo University of Science

Prof. Chikamasa Yamashita is a distinguished professor of the Faculty of Pharmaceutical Sciences, from the Department of Medicinal and Life Sciences at Tokyo University of Science, Japan. Prof. Yamashita holds a PhD in the field of Pharmaceutical Sciences from The University of Tokushima, Japan. With over 30 years of pharmaceutical research experience Prof. Yamashita is an expert in field of regeneration medicine and nasal drug delivery systems. He has helped author over 150 research publications in nationally and internationally accredited journals and currently holds five patents in the field of pharmaceutical research to his credit.
Official TUS website

About Junior Associate Professor Tomomi Akita
from Tokyo University of Science

Official TUS website

Funding information

This work was supported by research funds from the Daiichi Sankyo TaNeDS Funding Program.


Contact Us

Public Relations Division, Tokyo University of Science

e-mail: mediaoffice(at sign)


Our site uses cookies to assist us in studying user behavior on the site and in improving the operation of the site. By using this website, you consent to our use of cookies. See our Privacy Policy for details.