Tokyo University of Science

MEDIA RELATIONS

2021.11.18 Thursday

New Tool Can Detect a Precursor of Engine-Destroying Combustion Instability

Scientists develop a tool that uses machine learning and a dynamical systems-based approach to identify a precursor of combustion instability in engines

Combustion engines, like those in aircrafts, remain at risk of fatal damage by a phenomenon called "combustion oscillations," where pressure fluctuations inside the engine become large. Now, researchers from Japan have developed a novel tool to detect a precursor to combustion oscillations using machine learning and a dynamical systems-based approach, opening doors to the prediction and prevention of related fatal damage to engines.

Combustion engines have been around since the late 18th century, although they did not gain popularity until over 50 years later. Now, they are practically ubiquitous, powering anything from cars and airplanes to turbines.

The part of the combustion engine in which the fuel is burnt (in the presence of oxygen) is called the combustor. The lifespan of a combustor can be limited by a phenomenon called "thermoacoustic combustion oscillations." When thermoacoustic oscillations become too large or out of control, it causes fatal damage to combustors, which can have enormous financial and human consequences.

Detecting combustion oscillations and preventing damage is a key effort in the field of thermal engineering. Recently, a team of scientists from Japan-including Hiroshi Gotoda, Yuhei Shinichi, and Naohiro Takeda from Tokyo University of Science, as well as Seiji Yoshida and Takeshi Shoji from the Japan Aerospace Exploration Agency (JAXA)-have developed a promising tool for the detection of a precursor of thermoacoustic oscillations. The study was made available online on May 10, 2021 and published in volume 59 of the American Institute of Aeronautics and Astronautics Journal on October 1, 2021.

"In our study, we have shown that the methodology combining dynamical systems theory and machine learning can be useful for detecting predictive combustion oscillations in multisector combustors, such as those in aircraft engines," says Prof. Gotoda, who headed the study.

The team conducted combustion experiments with varying fuel flow rates in a staged multisector combustor developed by JAXA.

The scientists used the data from these experiments to train a machine learning algorithm called 'support vector machine (SVM).' The SVM allowed them to classify the combustion into three states-stable, transitional, and combustion oscillations. The pressure fluctuations in the transitional state are key to predicting future combustion oscillations. In the transitional state, pressure fluctuations transition from being small-amplitude and aperiodic to being large-amplitude and periodic. Amplitude represents the 'largeness' of the fluctuation, whereas periodicity describes the repetition of the fluctuation.
"The findings of this study will contribute greatly towards developing a method to detect combustion oscillations in advance in aircraft engines," reveals Prof. Gotoda.

These findings could have far-reaching consequences, paving the way for confident and timely predictions of combustion oscillations, with the potential to save billions of dollars and human lives.

Reference
Titles of original papers  : Early Detection of Thermoacoustic Combustion Oscillations in Staged Multisector Combustor
Journal  : AIAA Journal
DOI  : 10.2514/1.J060268
About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

■Tokyo University of Science(About TUS) : https://www.tus.ac.jp/en/about/
■Research List: https://www.tus.ac.jp/en/news/03/
About Professor Hiroshi Gotoda from Tokyo University of Science

Professor Hiroshi Gotoda is a preeminent authority on thermal engineering, affiliated with the Department of Mechanical Engineering, Tokyo University of Science. He obtained his PhD from Keio University in 2003. His research interests include combustion engineering, non-linear dynamic and thermo-fluid mechanics. Professor Gotoda's storied career includes teaching and research positions at Ritsumeikan University, Japan, National Institute of Standards and Technology, Japan, and the Lawrence Berkley National Laboratory, USA. He has been the recipient of numerous awards, including the Keio University Yagami Award and a Minister of Education, Culture, Sports, Science and Technology Young Scientist Award.
https://www.tus.ac.jp/en/fac/p/index.php?6b4f
https://www.rs.tus.ac.jp/gotodalab/English2.html

Funding information

This study was partially supported by a Grant-in-Aid for Scientific Research (B) number 19H02085 from the Japan Society for the Promotion of Science and a Grant-in-Aid for Research on Boilers and Pressure Vessels by the Japan Boiler Association.

Back

Contact Us

Public Relations Division, Tokyo University of Science

e-mail: mediaoffice(at sign)admin.tus.ac.jp

1-3, KAGURAZAKA SHINJUKU-KU TOKYO 162-8601 JAPAN

Our site uses cookies to assist us in studying user behavior on the site and in improving the operation of the site. By using this website, you consent to our use of cookies. See our Privacy Policy for details.
OK