Bio Technology

Non-invasive Quality Evaluation of Fruits Using AC Impedance Method

Noboru KATAYAMA Associate Professor, Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science

Purpose of Research

Fruit internal quality is a critical factor that determines harvest timing and market value. However, conventional methods such as near-infrared spectroscopy and gas sensors are costly, while image processing and ultrasound techniques face limitations in accurately evaluating internal conditions. In addition, measurement variability caused by fruit-to-fruit differences has reduced the reliability of quality assessment. This study aims to overcome these challenges and achieve low-cost and stable quality evaluation.

Summary of Research

This study proposes a method that combines AC impedance spectroscopy with the distribution of relaxation times (DRT) to non-destructively and accurately evaluate internal qualities of fruits, such as ripeness and damage. The approach reduces the influence of individual differences, ensures stable measurements, and can be implemented with a very simple device.

経過日数と緩和時間分布

電極間距離と緩和時間分布

 Enables non-invasive (non-destructive) and highly accurate inspection of all samples

- Minimizes the influence of individual differences, allowing for uniform quality evaluation
- Based on an electrochemical approach, enabling automation and labor-saving in inspection processes at low cost

Comparison with Conventional or Competitive Technologies

- Can be constructed at lower cost compared with near-infrared spectroscopy and gas sensor methods
- Provides higher accuracy in evaluating internal fruit conditions compared with image processing and ultrasound methods

Expected Applications

- •Optimization of harvest timing through quality visualization
- •Automation of inspection processes in distribution
- Freshness assessment at the retail stage

Challenges in Implementation

- •Development of highly durable electrodes
- Low-cost and reliable circuit design

What We Expect from Companies

- •Joint development of a prototype device using this method
- •Demonstration tests with the prototype device

Future Developments

April 2026: Prototype completed

April 2027: Demonstration tests started

■Intellectual Property Rights: Patent Application 2025-012237

■Prototype: Available

2025.09