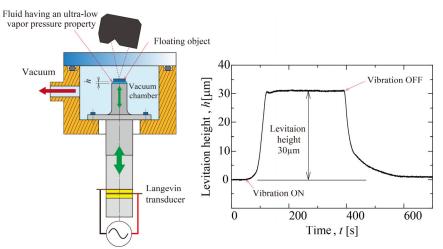
Device

Non-contact levitation technology in a vacuum environment using ultrasonic vibration


MasaakiProfessor, Department of Mechanical Engineering,MIYATAKEFaculty of Engineering, Tokyo University of Science

Purpose of Research

There are many demands for non-contact levitation of objects in space environments and semiconductor manufacturing processes in a vacuum. In this study, we have applied a non-contact levitation technology using ultrasonic vibration to non-contact levitation in a vacuum environment. At present, non-contact levitation of a plate object in a vacuum environment has been achieved. In the future, non-contact levitation of a rotor is planned to be attempted.

Summary of Research

Non-contact levitation technology using ultrasonic vibration is a phenomenon in which the time-averaged pressure in the levitation gap between the levitated object and the relative surface becomes higher than the ambient pressure when the surface is vibrated at a vibration frequency in the ultrasonic range, also known as squeeze film levitation. Typically, a gas (mainly air) is used for squeeze film levitation, but air cannot be used in a vacuum environment. In this study, research is being conducted on squeeze film levitation in a vacuum environment using liquids with extremely low vapor pressure, such as vacuum pump oils and ionic liquids.

Squeeze film levitation experiments in a vacuum environment

Points

Convenient construction enables non-contact levitation in vacuum environments.

Reduction of wear compared to conventional contact bearings.

Future Developments

Comparison with Conventional or Competitive Technologies

Compared with conventional technology, the simple structure and external equipment enable non-contact levitation in a vacuum environment.

Expected Applications

As the load during non-contact levitation is relatively small, it is suitable for levitating small, lightweight objects in a vacuum environment.

Challenges in Implementation

Non-contact levitation of plate-type objects has already been achieved, and now non-contact levitation of a rotor is being attempted.

What We Expect from Companies

This research is a topic that has just started and is not aimed at a specific application. We look forward to working with companies that are willing to cooperate with us on a wide range of topics, including the introduction of applications (uses) for this technology.

2024.10 Non-contact levitation of a plate object (achieved).
2025.11 Prototype and evaluation of a journal bearing for a rotor (planned).
2026 Non-contact levitation of a rotating shaft in vacuum (planned).

TOKYO UNIVERSITY OF SCIENCE Organization for Innovation and Social Collaboration