サイエンス

天然食用色素による低コスト・非侵襲な細胞の生死判定法

Low cost and noninvasive cell viability assay using natural food pigment

徳永 英司 Eiji Tokunaga 教授 山下 恭平 Kyohei Yamashita 講師 東京理科大学 理学部 物理学科

研究目的

非侵襲な生死判定法は、再生医療、遺伝子工学、単一細胞分析、微生物培養など細胞への負荷が懸念 される研究、産業分野で必要とされています。安価かつ取扱いが容易で、ヒトや環境にやさしい判定法 は、食品分野や一般家庭の衛生管理のような、高い安全性が求められる環境でも利用が期待されます。

研究概要

細胞の生死判定は、死細胞のみが試薬(色素)によって染色される原理を用いた**色素排除法**により行われ ます(図1)。一般に使われる合成色素に代わり、天然食用色素のベニコウジ色素とムラサキイモ色素を 単細胞緑藻ユーグレナ・グラシリス(ミドリムシ)に適用した結果、従来の侵襲的な合成色素に比べ、 同程度の高感度で短時間な染色と、より高い耐薬品性が確認されました。モニタリングの結果、生育抑制 **や死細胞の増加が起こらない**ことも確認できました(ムラサキイモ色素は要グルコース添加:図2)。

図1. 色素排除法の概念図 (ユーグレナ)

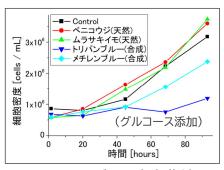


図2. ユーグレナ生育曲線

表1. 各種細胞の生死判定(ベニコウジ色素)

様々な 染色	動物		原生生物			
	ヒト		原生動物	藻類(単細胞)		藻類(群体)
細胞	乳がん細胞	赤血球	ゾウリムシ	ユーグレナ	クラミドモナス	ボルボックス
生細胞死細胞	100 μm	8 μm	100 μ m	50 μ m	10 μ m	100 μm

従来・競合との比較

- ・非侵襲な生死判定法:生育抑制や死細胞の増加なし
- ・低コスト: 合成色素トリパンブルーの1/10 価格(1円/1mL) ・高感度検出:合成色素トリパンブルー、メチレンブルーと同等 (明視野顕微鏡判別可能:倍率100倍)
- ·短時間検出:3 分以内
- ・耐薬品性:0.2%塩化ベンザルコニウム溶液中で従来色素より も安定した染着性
- ・長期の生死判定モニタリング:3日間
- ・高汎用性:ユーグレナ、ヒト乳がん細胞、原生動物ゾウリムシ 単細胞緑藻クラミドモナスで確認
- ・選択的染色:ベニコウジ色素はタンパク質への染着性が特に高く、 含有率の高い細胞を選択的に染色可能

想定される用途

- ・色素排除法に基づく生死判定試験全般
- ・非侵襲な生死判定:再生医療、遺伝子工学など
- ・長期の生死判定:密閉、嫌気環境での培養
- ·微生物検出:衛生管理
- (高い安全性を要する食品加工現場、食堂、一般家庭など)
- ・細胞標識:セルカウンター

実用化に向けた課題

・生物種ごとの最適条件の探索:色素濃度、pH調整、添加剤

・単離した各色素ごとの染着性評価

企業へ期待すること

・本手法のキット化の共同開発 (バイオ研究用途、

食品・医療介護施設向け衛生検査用途)

・細菌、汚染源(タンパク質)検出技術の開発 へ向けたベニコウジ色素の応用(図3)

図3. 天然色素の タンパク質 特異的染色

2025.06

- ・生死判定試薬として天然食用色素を使用(ベニコウジ色素、ムラサキイモ色素)
- ・安全で安価(生育抑制なし、トリパンブルーの1/10 価格)
- ・長期の生死判定可能、耐薬品性、高汎用性(ヒト乳がん細胞・赤血球、原生動物、藻類で確認)

今後の展開

天然色素を用いた細菌・汚染源(タンパク質)の 検出法の確立、およびキットの作成

- ■知的財産権:特許 第7186433号
 - 「細胞の生死判別方法及び細胞の生死判別用キット」
- ■試 作 品:あり

