Environment photoenergy

Tatsushi IMAHORI (Associate Professor, Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science)

Purpose of Research

In the Earth's carbon cycle, atmospheric CO_2 has been greatly increasing. Unless appropriate measures are taken to reduce atmospheric CO_2 , CO_2 may increase further in the atmosphere to exacerbate global warming and deplete fossil carbon resources. To resolve the increase of the atmospheric CO_2 , there is demand for developing technologies that capture CO_2 and convert it into usable materials as carbon resources with net zero CO_2 emissions. With the aim of demonstrating the technologies, in this research we have developed a chemical absorption method that uses photoenergy to capture, storage and release CO_2 .

Summary of Research

In this research we have developed a molecule that changes its structure with optical photoenergy. Photo-irradiation switches the chemical state of this molecule reversibly between two states: one is outstanding at absorbing CO_2 and the other is poor. Using this property, we have succeeded in efficiently controlling the capture, stock and release of CO_2 by photo-irradiation arbitrarily and repeatedly.

- Achieves CO₂ capture/release without heating/decompressing process
 → Reduction in CO₂ recycling costs and expansion of applications of CO₂ capture/utilization technologies
- CO₂ recycling technology that does not use exhaustible fossil energy
 Enables comprehensive CO₂ reduction in the atmosphere, leading to climate change mitigation

Comparison with Conventional or Competitive Technologies

- [Conventional situation] Energy-consuming processes such as heating/decompression are required to release CO₂, which induces problems such as indirect CO₂ emissions via consumption of fossil energy, high energy cost, and limited available treatment facilities.
- [This technology] It uses limitlessly available sunlight without consuming exhaustible fossil energy to comprehensively reduce CO₂.

Expected Applications

- Capture/storage of CO₂ from flue gas of factories such as thermal power plants and from the atmosphere
- Promotion of growing plants with captured CO₂ (plant factories, plastic greenhouses and plant culturing)
- CO₂ cycling in living spaces (closed environments, underground spaces, submarines and space stations)

Challenges in Implementation

- Search for molecules more efficient at CO₂ capture/release and stabler in CO₂ storage (especially improvement of CO₂ release efficiency)
- Development of a system that uses the renewable energy of sunlight
- Expansion of the operating scale
- Development of a prototype equipment
- (instrument development)Improvement of analysis accuracy
- Improvement of analysis accurac (equipment development)

What We Expect from Companies

- Collaboration in development of separation/focusing
- techniques for using $U\dot{V}$ /visible light in sunlight
- Joint development of a prototype equipmentImprovement of analysis accuracy
- (joint development of an equipment)
- Supply of molecules in large amounts for practical use

Future Developments

POINT

Improvement of the capture/release efficiency by optimizing the structure Evaluation and improvement of durability Development of a sunlight utilization system Completion of a prototype equipment

- Associated System: JST-Mirai Program
- "Realization of Low-Carbon Society by creating Game Changing technology"
- Intellectual Property: Japanese Patent Application No. 2019-036824
- Sample: Available

TOKYO UNIVERSITY OF SCIENCE Organization for Innovation and Social Collaboration