Device

Development of a next-generation low-power transistors capable of operating at frequencies ranging from gigahertz to terahertz

Hiroki FUJISHIRO Satoshi ENDOH

(Professor, Department of Applied Electronics, Faculty of Advanced Engineering, Tokyo University of Science)(Professor, Department of Applied Electronics, Faculty of Advanced Engineering, Tokyo University of Science)

Purpose of Research

For technologies such as next-generation communications, unexplored sensing technologies, and ultimate computing to be achieved, new high-frequency low-power transistors are required. To develop such devices, we are conducting research into transistors using Sb-based compound semiconductors that exhibit high electron mobility.

Summary of Research

To develop a high electron mobility transistor (HEMT) that can operate at frequencies ranging from the millimeter-wave band to the terahertz wave band (30 GHz–3 THz) using Sb-based compound semiconductors, we carried out the design and analysis of the device by means of a Monte Carlo simulation of HEMT using an InSb-based material, fabricated and evaluated the HEMT epitaxy structure using a molecular beam epitaxy (MBE) apparatus, and then fabricated and evaluated the device.

channels using step buffers.

Cross-sectional TEM image of the prototype GaInSb channel HEMT (gate electrode length: ~50 nm)

Future Developments

2021: Achieve high quality for Sb HEMT structure crystal Achieve high speed for Sb HEMT

2022: Evaluate low noise characteristics for Sb HEMT

Comparison with Conventional or Competitive Technologies

InSb exhibits electron mobility that is more than 50 times higher than that of Si, and it is attracting attention as the third-generation electronic material following GaAs- and InAs-based materials. It is possible to produce a material that will deliver a world-leading performance that is superior to that of GaAs- and InAs-based materials by applying the following: a device structure design that makes full use of band engineering and strain engineering; thin film growth at the atomic layer level that realizes the design; and ultrafine processing at the nanometer level.

Expected Applications

The terahertz range of the invisible light and electromagnetic spectrum is regarded as being a suitable bandwidth for unexplored sensing technologies, next-generation communications, ultimate computing, and the like. It is expected to be applied in a variety of fields, including manufacturing, telecommunications, medicine, biotechnology, agriculture, and security. InSb-based HEMT can make a significant contribution to the realization of applications such as an ultimate-performance low-power transistor that is capable of operating in the terahertz range.

Challenges in Implementation

We aim to stably achieve a high-level transistor performance in the terahertz range and further pursue the formation of an IC.

What We Expect from Companies

The Sb-based semiconductor is attracting attention not only as a high-speed high-frequency transistor, but also as a channel material for LEDs, light detectors, and the like in the terahertz to mid-far infrared range. We are searching for companies and research institutions that can work together on developing practical uses for this material.

- Awards: Distinguished Services Award for Electronics Society Initiatives received from the Institute of Electronics, Information and Communication Engineers (2011)
- Awards: Paper presentation Award of Electron Device Technical Committee received from the Institute of Electronics, Information and Communication Engineers (2021)

TOKYO UNIVERSITY OF SCIENCE Organization for Innovation and Social Collaboration