宇宙環境利用における熱流体工学 ^{- 環境制御および生命} 維持機構 (Environmental Control and Life Support Systems, ECLSS) 開発に向けて

宇宙航空研究開発機構研究領域主幹 ざくらい まさ 東京理科大学 創域理工学部 うえの いちろう 東京理科大学 連携大学院 客員教授 桜井 誠人 機械航空宇宙工学科 教授 上野 一郎

1. はじめに

宇宙航空研究開発機構(Japan Aerospace Exploration Agency:以下, JAXA)は現在 (2024年11月執筆時), 月面・火星といった衛星・惑星での探査活動や、それ らの活動に付随する軌道上施設を対象とし、環境制 御・生命維持に関する研究・開発を行っている. これ は、アメリカ航空宇宙局 (National Aeronautics and Space Administration:以下, NASA)が2019年に発表 したアルテミス計画 (Artemis Plan:以下, Artemis 計画) への参画に基づくものである.この計画では、月面へ の有人着陸計画や火星への有人探査計画が含まれてい る¹⁾. すなわち, 1998年以降運用が継続されている 国際宇宙ステーション(International Space Station:以下, ISS)の地球低軌道(Low Earth Orbit:LEO)に対し、距 離的にはるかに凌駕する空間領域での有人活動を目指 している. ISS は地表からの平均距離として約 400 km の上空にて運用されているのに対し、地球から月まで の2024年における最接近時地心距離は3.572× 10⁵ km²⁾, さらに地球から火星までの距離は 2003 年 から2100年の間での最接近時でも5.576×10⁷ km, 最も離れる際には 1.0142×10⁸ km³⁾ となっているこ とから、いかに野心的な計画か想像に難くない.

火星への有人探査では、地球からの中継地点として、 月面や月周回有人拠点(以下, Gateway)⁴⁾の利用を想 定している^{1.5)}【図1】.すなわち、月面やGatewayで のヒトの長期滞在が前提となる.地球低軌道を超えた

【図1】Artemis計画における火星探査に向けた月面基地での準備に 関する模式図¹⁾. Credit: NASA.

領域への有人探査を実現するためには,月面や軌道上施設といった特殊環境における「安全かつ持続的な」¹⁾ 居住環境の実現が重要な課題となる⁵⁾.筆者の一人である桜井は,JAXAにおいて特に宇宙環境居住における環境制御および生命維持機構(Environmental Control and Life Support Systems:以下, ECLSS)の開発に携わってきた^{6,7)}.本記事では,ECLSS開発に向けた従来の知見や,東京理科大学とともに行っている研究・開発内容の一部を紹介したい.

2. ECLSS

ECLSS は、ヒトが居住可能な環境、すなわち、主 に(1)空気、(2)水、(3)食料、(4)廃棄物処理機 能、そして(5)安全性の提供を実現するシステムの 総称⁸⁻¹⁰⁾である.本稿では(1)から(4)の項目に注 目して紹介する.

いかなる環境においても、ヒトはその生命を維持す る上で、空気や水、食料をはじめとする資源を取り込 み,二酸化炭素,尿・糞便,汗,毛髪や頭皮,皮膚, 生活排水といった廃棄物を排出する.地球を離れた宇 宙環境では、ヒトが生きていく上で必要なものを供給 し、また、排除が必要なものを適切に排除する必要が ある. ECLSS は地球への依存度が大きいものから順 に、「消費型」、「再生型」、そして「自立型」の3つ に大別される^{9,11)}.ここで、「消費型」は ECLSS の機 能を地球から運んだ物資のみに依存するもの、「再生 型」は空気や水などを再生する機能を有することで地 球から運ぶ物資を削減した状態で ECLSS を実現する もの、そして「自立型」は空気や水だけでなく食料生 産も機能として有するものを指す. ISS に先立ちアメ リカが実施していた 1960 年代以降のマーキュリー、 ジェミニ,そしてアポロ計画では,宇宙船の利用が一 回のみであるため、ECLSS も一回限りの利用であり 「消費型」に分類される. アメリカの宇宙ステーショ ン Skylab の時代から宇宙飛行士の滞在期間が長くな り,「再生型」ECLSS が本格的に採用されている¹²⁾. 物資の再生・生成を実現することで、輸送コストが大 幅に削減され、結果的に ISS の運用コストが削減され

【表1】ISS で活動する宇宙飛行士1人が1日あたり必要とする リソース. 文献¹⁰⁾を元に著者が作成.

必要とする物質	量 [kg/(人・日)]
代謝酸素	0.84
飲用水	3.57
食料	0.62
衛生活動用水	5.45

【表 2】ISS で活動する宇宙飛行士1人の1日あたりの排出物. 文献¹⁰⁾を元に著者が作成.

排出物	量 [kg/(人・日)]
代謝二酸化酸素	1.00
水分(汗・呼気中)	1.82
尿(固体成分(乾燥後))	0.06
尿(液体成分)	1.50
汗(固体成分)	0.018
糞便(固体成分(乾燥後))	0.032
代謝水	0.354
小便洗浄用水	0.50
衛生活動用水	0.427
食料生産用水	0.027
洗濯用水	0.06
木炭(有毒ガス除去用)	0.06
食料包装	0.454
ごみ	0.817

た.地球低軌道を超える遠距離での居住を実現するためには、言うまでもなく「自立型」ECLSSの確立が 大前提となる.

ECLSS の性能を決定するためには、ヒト1人が取 り込み、そして排出する量を基準とする必要がある. 公開されているいくつかの資料10.13.14) で確認をするこ とが出来るが、ここでは、文献10)を参考にそれらの 値を紹介する【表 1, 2】. ECLSS は, 対象とする区画 に居住する人間の基礎的活動に対し、その人数分の充 分な空気や水の再生・提供、充分な食料の提供、さら に,廃棄物処理の機能を賄う.ここで,軌道上施設内 で宇宙飛行士たちの生命維持に必要な資源と、それぞ れの再生技術に関する関係を表した概念図を【図2】 に示す.詳細は、この図を作成するにあたり参考にし た文献150や、一般に公開されている資料140に譲るこ とにしたい. 資源の再生技術については、物理化学的 (Physico-Chemical, P/C) あるいは生物学的 (Bio-regene rative) プロセスで構成される. 食料の再生は生物学 的プロセスによってのみ達成されるが、現時点でその 技術は成熟しているとは言い難い状況であり、設計初 期に要するコストも甚大となることが予想されている¹⁴⁾. そのため、ミッションの規模(期間・人数)に応じた 再生技術および供給物資の選択が重要となる¹⁶⁾.特に

【図3】空気再生システムの概略図

火星での居住を想定すると,火星大気の主要成分が二酸化炭素であるため,施設内での植物育成に利すると考えられる¹⁴⁾など,居住先における環境を最大限に活かした技術開発が必須となる.

筆者(桜井)が取り組んでいる研究・開発の中心に なっている空気の再生について考えよう.地球上では 我々が生命を維持するために必要な空気(あるいは酸 素)は,植物による光合成,すなわち生物学的プロセ スによって実現している.一方,空間的規模が限定さ れた宇宙環境居住施設では,物理化学的プロセスが有 効である^{14,17)}.宇宙施設内に居住するヒトの呼気に含 まれる二酸化炭素は,施設内の空気に混入する.それ らは,ゼオライトやシリカゲル等の物理的吸着剤によ り除去・回収¹⁷⁾された後,【図3】に示すプロセスに より酸素へ還元されてヒトや動植物が居住する施設に 供給する.ここで,重要なプロセスとなるのが,【二 酸化炭素の還元】と【酸素の生成】である. 【二酸化炭素の還元】 一般に,二酸化炭素は化学的プロセスにより水への還元が可能である.主要な還元プロセスとして,ボッシュ(Bosch)反応やサバチエ(Sabatier)反応が挙げられる.これまでのところ,反応器の重量や動作温度などの点において Sabatier 反応が用いられている^{14,18)}.ここで,Sabatier 反応の反応式は以下の通りである.

$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

Sabatier 反応では二酸化炭素が水とメタンガスに 還元される.現状では生成メタンガスから水素を 回収する際,炭素微粉末の取り扱いや触媒表面へ の付着などの課題が解決困難であり,生成メタン ガスの一部は推進力として直接利用されている. ここで,生成されたメタンを液体燃料として,火 星表面から離陸し地球へ戻る,いわゆる Mars Ascent Vehicle への利用検討¹⁹⁾ など,将来に向け て効率の高いシステム構築が研究されている.

【酸素の生成】 水を電気分解し,酸素を生成する. こ こで,水電気分解の反応式は以下の通りである.

 $2H_2O \rightarrow 2H_2 + O_2$

特筆すべきは、この反応において、Sabatier 反応 によって還元された水を利用することができ る^{6,14)}, また、この反応で生成される水素を Sabatier 反応に利用することができるため、物質の循環を 伴う酸素生成が可能となる.

3. ECLSS と熱流体工学

【図3】に示した通り,空気再生過程において, Sabatier 反応ではメタンガスと水(液体)の混合物が、 水電気分解では水素および酸素ガスと水(液体)の混 合物が発生する. ECLSS 開発において重要なプロセ スとして、各々を個別に回収する必要がある. ここで 重要なのは、いずれの過程においても気体と液体の混 相流, すなわち, 『気液二相流』が発生する点である. 地球上では重力の影響が支配的であるため、気体と液 体の分離は密度差により容易に実現できる. つまり, 重いものは沈み、軽いものは浮く、という挙動を利用 している.一方,軌道上施設では微小重力環境となる ため(ISSでは平均して地上の重力gの約10,000分の1 (1×10⁻⁴g)),密度差を利用した自発的な相分離が困 難となる. そこで、遠心力を利用した回転分離など、 なんらかの機構を導入する必要がある.まさにこの点 において, ECLSS 開発における熱流体工学の応用が 必要不可欠となる. 宇宙開発の分野では, 推進や移動 に用いる液体燃料タンクだけでなく、燃料電池やヒー

の制御が求められる要素が存在する²¹⁾.重力が小さい 環境においては、気体と液体の境界(自由表面)に作 用する表面張力の影響が顕在化するため、地上で蓄積 されてきた技術・知見だけでは解決することが困難と なる.特に、今回紹介した二酸化炭素還元および水電 気分解では、それぞれ、気体の量が相対的に多い混相 流(ガス・リッチ (gas-rich) 条件),液体の量が相対的 に多い混相流 (リキッド・リッチ (liquid-rich) 条件) が 発生することから、それぞれの特性に対応しうる気液 分離機構の開発が必須である. 微小重力環境下での気 液分離技術はこれまでにも複数提案されており、現在 は遠心分離機構によるもの22)や毛管力駆動によるも の23)が主流である。特に、後者の毛管力駆動は、資 源の限られる有人宇宙施設において,外部からのエネ ルギー供給を必要としない、あるいは少ないエネルギ ー供給で実現するという大きな利点²⁴⁾がある.これ まで JAXA では, liquid-rich 条件および gas-rich 条 件それぞれにおける気液分離機構の研究・開発を進め てきた. 【図 4(a)】は、そのうちの gas-rich 条件用 に開発した気液分離装置の一例である. これは、濡れ 性の異なる二種類の多孔質体を組み合わせ、表面張力 の作用により自発的・効率的に気液を分離する機構を 持つ.現在,桜井研と上野研では、表面張力の寄与を 最大限に活かした気液分離機構の実現を目指した共同 研究を実施し、実験や数値解析【図4(b)】を通じて その性能の検証や改良につなげている200.また、水電 気分解についても、電極で生成した気泡の除去が宇宙 環境での利用に限らず現在も大きな問題となってい る⁶⁾. これまで重力ありきで理解していた熱流体の挙 動・性質について, ISS や Gateway, さらに月面や火 星など、様々な重力環境下での応用を可能とするべく 研究・開発を進めていく必要がある.

トパイプ,温湿度制御システムなど様々な気液二相流

4. おわりに

本稿では、衛星・惑星での探査活動や、それらの活 動に付随する軌道上施設を対象とした環境制御・生命 維持機構について簡単な紹介を行った. Artemis 計画 により、人類が再び月面に降り立ち、さらに月面に滞 在しながらより遠くの惑星を目指すという夢が、小説 や映画だけの話ではなくなる日が間近にきているかも しれない. そのために、いかにして人類が持続的に、 かつ、安全に生活を営むことができるか. どのような 技術開発が必要であり、どのような研究活動が必要に なるのか.本稿を読む大学生や高校生、中学生の方が まさに中心となって進めていくであろう話題と感じて もらえれば嬉しい限りである.また,地球低軌道を超 える宇宙進出にかかる技術開発を地球での我々の生活 にフィードバックすること²⁵⁾もこの計画がもたらす ものの一側面であることも踏まえ,我々が行っている 研究・開発が,宇宙で生活するヒトのためだけではな いことも強調しておきたい.

本稿で紹介した内容は,島明日香博士 (JAXA)を はじめとするスタッフの方々,連携大学院生として桜 井研究室に所属する東京理科大学大学院創域理工学研 究科機械航空宇宙工学専攻の学生さんたちの多大なる 貢献のもとで得られたものである (一例として 2024 年 度の事案を紹介する²⁶⁾).また,JAXA との共同研究に寄 与している上野研の学生さん全員に謝意を表する.

[参考文献]

- National Aeronautics and Space Administration (NASA), NASA's Lunar Exploration Program Overview, Tech. Rep. (2020) [cited 2024/11/28].
- 2) 国立天文台,月の地心座標 [cited 2024/11/28]. https://eco.mtk. nao.ac.jp/cgi-bin/koyomi/cande/moon.cgi
- 3) 国立天文台,火星:最接近一覧 [cited 2024/11/28]. https://www. nao.ac.jp/astro/basic/mars-list.html
- National Aeronautics and Space Administration (NASA), Gateway [cited 2024/11/28]. https://www.nasa.gov/mission/gateway/
- International Space Exploration Coordination Group (ISECG). Global Exploration Roadmap 2024 [online] (2024) [cited 2024/11/28].
- M. Sakurai *et al.*, Fundamental study of water electrolysis for life support system in space, Electrochimica Acta 100 (2013) 350–357.
- 7) 桜井誠人,宇宙機における生命維持システムについて,生物 工学会誌 96 (2018) 681-683.
- P. Wieland, Environmental control and life support system evolution, in: Proc. of Technology for Space Station Evolution –A Workshop, Volume 2: Data Management System (Environmental Control and Life Support Systems), 1990, 343–366.
- P. Eckart, Spaceflight Life Support and Biospherics, Springer Science+Business Media, Netherlands, 1996.
- 10) D. L. Henninger, Lunar base life support and crew health, in: The Lunar Base Handbook (2nd Ed.) (Ed. P. Eckart *et al.*), Learning Solutions, USA, 2006, 369–411.
- 下田隆信,宇宙ステーションの空気環境を創る環境制御・生 命維持システム, Medical Gases 16 (2014) 7-12.
- P. O. Wieland, Designing For Human Presence in Space: An Introduction to Environmental Control and Life Support Systems (ECLSS). Appendix I, Update–Historical ECLSS for U.S. and U.S.S.R./Russian Space Habitats, Tech. Rep. NASA/TM–2005–214007, National Aeronautics and Space Administration (NASA) (2005) [cited 2024/11/29].
- L. J. Peterson, Environmental Control and Life Support System (ECLSS), System Engineering Workshop (2009).
- 14) Life Support Baseline Values and Assumptions Document -, Tech.

【図 4】(a) JAXA が開発した gas-rich 条件用気液分離機構および, (b) 東京理科大学・JAXA が行った計算結果の一例.計算では画面 手前側に濡れ性のよい多孔質体を, 奥側に濡れ性の悪い多孔質体を 配置している.液体は基本的に濡れ性のよい多孔質体側を進んでい くが,気体流量によっては濡れ性のよい多孔質体側に気体が巻き込 まれ,気泡が形成される²⁰⁾.

Rep. NASA/TP-2015-218570/REV2, National Aeronautics and Space Administration (NASA) (2022) [cited 2024/12/01].

- S. C. Doll, C. M. Case, Life support function and technology analysis for future missions, SAE Technical Paper, 1990, 901216.
- D. J. Barta, D. L. Henninger, Regenerative life support systems –Why do we need them?, Adv. Space Research 14 (1994) 403–410.
- D. El Sherif, J. C. Knox, International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) concepts and advancements, Tech. Rep. Rept-2005-01-2892, National Aeronautics and Space Administration (NASA) (2005) [cited 2024/12/01].
- L. Spina, M. C. Lee, Comparison of CO₂ reduction process –Bosch and Sabatier, SAE Technical Paper, 1985, 851343.
- 19) J. E. Kleinhenz, A. Paz, An ISRU propellant production system to fully fuel a mars ascent vehicle, in: Proc. of 10th Symp. on Space Resource Utilization (9–13 Jan. 2017, Grapevine, Texas), 2017, AIAA 2017– 0423 [cited 2024/12/01].
- 20)村上岳他、二酸化炭素還元システムを想定した Gas-rich 条件 下における気液分離装置の数値シミュレーション, in:第67 回宇宙科学技術連合講演会(17-20 Oct. 2023, 富山)予稿集, 2023, P041.
- 21) F. P. Chiaramonte, J. A. Joshi, Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology Final Report, Tech. Rep., National Aeronautics and Space Administration (NASA) (2004).
- 22) D. J. Samplatsky, W. C. Dean, Development of a rotary separator accumulator for use on the International Space Station, SAE Technical Paper, 2002–01–2360, 2002.
- 23) M. M. Weislogel, J. T. McCraney, The symmetric draining of capillary liquids from containers with interior corners, Journal of Fluid Mechanics 859 (2019) 902–920.
- 24) 上野一郎,表面張力による濡れ促進:『メニスカス・ポンプ』, 東京理科大学科学フォーラム 438 (2023) 30-35.
- 25) V. Maiwald *et al.*, From space back to earth: supporting sustainable development with spaceflight technologies, Sustainable Earth 4 (2021) 3.
- 26) 東京理科大学 HP, ニュース&イベント:受賞 (2024). https:// www.tus.ac.jp/today/archive/20240913_3457.html